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ABSTRACT 

Low flow events can cause significant impacts to river ecosystems and water-use sectors; as such 

it is important to understand their variability and drivers. In this study, we characterize the 

variability and timing of annual total frequency of low streamflow days across a range of 

headwater streams within the continental United States (US). To quantify this, we use a metric 

that counts the annual number of low flow days below a given threshold, defined as the 

Cumulative Dry days Occurrence (CDO). First, we identify three large clusters of streamgauge 

locations using a Partitioning Around Medoids (PAM) clustering algorithm. In terms of timing, 

results reveal that for most clusters, the majority of low streamflow days occur from the middle 

of summer until early fall, though several locations in Central and Western US also experience 

low flow days in cold seasons. Further, we aim to identify the regional climate and larger-scale 

drivers for these low streamflow days. Regionally, we find that precipitation deficits largely 

associate with low streamflow days in the western US, while within the central and eastern US 

clusters, high temperature indicators are also linked to low streamflow days. In terms of larger-

scale, we examine sea surface temperature (SST) anomalies, finding that extreme dry years 
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exhibit a high degree of co-occurrence with different patterns of warmer SST anomalies across 

the Pacific and northern Atlantic Oceans. The linkages identified with regional climate and SSTs 

offer promise towards regional prediction of changing conditions of low streamflow events.    

 

KEYWORDS: Cumulative Dry days Occurrence (CDO), headwater streams, low streamflow, 

clusters, regional climate, larger-scale drivers  

 

1 |  INTRODUCTION 

Every river or stream undergoes low flow events during the year (Smakhtin, 2001). The  

variability of low flow conditions (e.g. occurrence and magnitude) depend on several natural and 

human factors that impact the ecological flow regime (Van Loon, 2013). Most streams within the 

United States (US) experience annual variations of low flow conditions as a function of rainfall, 

snowmelt, catchment characteristics, land-use/land-cover, water control infrastructures, water 

withdrawals, and water discharges, etc. Low flows matter for maintaining water quality and can 

be used to set pollution discharge permit limits. Within US streams, the design flow statistic that 

is often used to define low flow conditions is the minimum 7-day mean flow that occurs on 

average once every 10 years (10q7) (US EPA, 2017). Once this limit is crossed, the stream is 

considered to be in a low flow event. Many water-using sectors care about low flow events, such 

as agriculture, navigation, recreation, and hydropower; these sectors are interested in information 
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on when in a year low flows can occur in a river/stream (e.g. occurrence timing), or how 

frequently/long low flow days can occur/persist within a specific time period and location of 

interest (e.g. cumulative occurrence in a year or season), or how far below a threshold can a 

streamflow (e.g. below 10q7 threshold) (Kroll & Vogel, 2000; Kroll et al., 2004). A variety of 

ecological outcomes depend on low flow conditions. One example, in the US context, is 

federally endangered fish species, such as chinook and coho salmon, and steelhead trout 

productivity in coastal California and Pacific Northwest, where spawning and migration patterns 

of these species depend largely on low flow and associated hydrological conditions (Waples et 

al., 2008). 

Most natural streams within the US experience annual variation of low flow events 

(Pournasiri Poshtiri et al., 2018). Observed natural low flow records indicated a gradual drying 

tendency of headwater locations in several major river basins of the US (Pournasiri Poshtiri & 

Pal, 2016). Under changing climatic conditions and land use modifications, more and more 

headwater perennial streams are expected to turn intermittent (Datry et al., 2016; Döll & 

Schmied, 2012; Jaeger et al., 2014; Reynolds et al., 2015), often with longer-term implications 

on local biodiversity and ecosystem functions (Bogan et al., 2015; Datry et al., 2016; Leigh & 

Datry, 2017; Najafi et al., 2018; Vander Vorste et al., 2016; Wohl, 2017). These changes do not 

seem to be happening at one specific location in isolation, rather, they have been found to be 

happening at the same time in a cluster of adjacent sites (Pournasiri Poshtiri & Pal, 2016), which 

could be associated with regional climatic conditions and human disturbances. Recent studies 
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indicate that naturally occurring and or managed streamflow stations within the US show similar 

responses to changes within the major river basins (Ficklin et al., 2018), indicating that water 

management and land-cover changes have not substantially altered the effects of climate on 

human-modified watersheds, as compared to the neighboring natural streams. Further, variations 

in streamflow over different parts of the US, and their regional climate drivers (e.g. temperature, 

precipitation) have been reported to be tele-connected to larger-scale ocean-atmospheric patterns 

in the Pacific or Atlantic Oceans (Armal et al., 2018; Baek et al., 2017; Berton et al., 2017; Cook 

et al., 2011; Feng et al., 2011; Ho et al., 2018; Ladd et al., 2018; Najafi et al., 2019; McCabe et 

al., 2008; Oglesby et al., 2012). Therefore, it is of interest to identify clusters of stream gage 

locations where annual variation of low flow incidence characteristics are of similar nature, and 

to investigate their association with climate variability, at both regional and larger-scales. 

In the US, there are relatively few recent studies that have deeply investigated the 

variability of low flow incidence frequency and their climatic associations. Reynolds et al. 

(2015) found an increase in the frequency of zero-flow days in the upper Colorado River basin in 

the dry precipitation years, associated with high temperatures and low precipitation (Reynolds et 

al., 2015). Eng et al. (2016) identified five distinct seasonality patterns in the zero-flow events in 

the US and strong correlation patterns with historical variations in climate. Sadri et al. (2016) 

reported that many stream gauge locations in the eastern US experiencing low flow events in late 

summer to fall, driven by the precipitation deficit and high evaporative demand. Berton et al. 

(2017) reported a strong teleconnection between the historic occurrence of the relative frequency 
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of dry streamflows but for the northeastern US alone – connecting with the extreme phases of 

Atlantic Multi-decadal Oscillation (AMO) and the North Atlantic Oscillation (PDO). Dierauer et 

al. (2018) classified low flow regimes and separated summer versus winter low flows in snow-

covered catchments in western US. They found that the co-occurrence of warm and dry winter 

conditions leads to significantly longer, more severe summer low flow events and shorter winter 

low flow events (Dierauer et al., 2018). Recently, a study by Pournasiri Poshtiri et al. (2018) 

compared the spatial variability of low flow magnitude indicators versus defiict indictors, 

showing that magnitude indicators are significatly different from the deficit indicators, though 

they show similar linkages to the regional climate and meteorological drought (Pournasiri 

Poshtiri et al., 2018). 

Building on the previous studies, the purpose of this study is to characterize the 

variability of annual total frequency of low streamflow days and their potential climate drivers. 

First, we calculate the frequency of low streamflow days, defined as the Cumulative Dry days 

Occurrence (CDO), across a range of headwater streams within the US. Next, we apply a non-

parametric data driven clustering algorithm to identify the spatial patterns of the annual CDO. 

Then, we calculate the occurrence timing of CDO. Further, we aim to identify the regional 

climate and larger-scale drivers for these low flow events. To this end, we examine the 

relationships between the CDO variability within each cluster and regional and larger-scale 

climate drivers.  
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We organize this paper as follows: section 2 describes the data used in this study and section 

3 presents the detailed assessment methods. Section 4 presents results, and section 5 presents the 

summary and discuss the outcomes. 

 

2 |  DATA 

2.1 | Annual Cumulative Low Streamflow Days Occurrence (CDO) 

We calculate CDO using daily streamflow records from the U.S. Geological Survey Hydro-

Climatic Data Network 2009 (HCDN-2009). There are 603 streamflow stations with between 25 

(1987-2012) to 111 years (1901-2012) of daily data and we only consider stations with less than 

10 percent missing values. Geographic locations of the stations are presented in Figure 1. 

HCDN-2009 represents headwater type stations whose flows are minimally impacted by human 

development (Lins, 2012). This data network is a valuable indication of observed natural 

streamflow records and has been employed in many streamflow studies (Frei et al., 2015; Kam & 

Sheffield, 2016; Newman et al., 2015; Pournasiri Poshtiri & Pal, 2014; Pournasiri Poshtiri & Pal, 

2016; Pournasiri Poshtiri et al., 2018; Rossi et al., 2016; Timilsena et al., 2009; Vidal et al., 

2010). We define the climate year to be from April to March for all the analyses; this is so 

streamflow from the entire dry season are included in the annual values (Cravotta, 1982; Martin 

& Arihood, 2010; Martin et al., 2016; US EPA, 2017).  

CDO is calculated using the threshold level method (Yevjevich, 1967), where the total 

number of days with flows going under a specific threshold are counted per year. Threshold 
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methods are the most frequently applied quantitative method to identify deficit characteristics 

from time series variables (Pournasiri Poshtiri et al., 2017; Tallaksen et al., 1997; Van Loon, 

2013). To calculate the threshold level, we first calculate the annual minimum 7-day mean river 

flow magnitude from the daily time series streamflow in each station (q7, low flow), and then, 

we determine the 10-year return value of q7 over the entire annual time series in each station 

(10q7). Under the stationary assumption, 10q7 is the lowest 7-day average flow that occurs once 

every 10 years. After that, we calculate CDO as the total number of days falling below 10q7 

within each climate year. The CDO 10q7 indicator dataset used in this analysis is freely available 

for download from NCAR’s research data archive (https://rda.ucar.edu/datasets/ds550.0/) 

(Pournasiri Poshtiri et al., 2016).  

  

2.2 | Regional climate indicators 

To explore associations between the CDO and regional climate, we calculate several 

regional climate indicators using daily temperature and precipitation data from the United States 

Historical Climatology Network (USHCN) (Menne et al., 2010). The USHCN stations represent 

long term high quality daily data from 1218 observing stations across the US (Menne et al., 

2010). Using this dataset, we calculate cumulative precipitation dry days as total annual number 

of days with precipitation less than 1 mm (Pcpd). In addition, we compute four temperature 

indicators including annual maximum value of daily maximum temperatures (Tmax), annual 95th 

This article is protected by copyright. All rights reserved.



 9 

percentile value of daily maximum temperatures (T95), annual mean value of diurnal temperature 

ranges (Tdtr), and annual mean daily temperature (Tave). 

We further check associations between annual meteorological drought indicator and 

CDO. We use the Palmer Modified Drought Index (PMDI) as meteorological drought indicator. 

This is a one-degree gridded monthly data product developed for the continental US, covering 

the period of 1895 to 2004. PMDI is a measure of meteorological drought/floods accounting for 

evapotranspiration, soil moisture and precipitation conditions in a region (Heim et al., 2007). 

 

2.3 | Larger-scale climate drivers 

For the larger-scale climate drivers, we investigate SST anomalies. We select Extended 

Reconstructed SST anomalies from NOAA NCDC ERSST version3b, obtained in ready-to-

analyze format from the IRI Data Library (http://iridl.ldeo.columbia.edu). This version of 

ERSST is optimally tuned to exclude under-sampled regions for global averages and it does not 

involve satellite data, which may cause a cold bias significant enough to change the rankings of 

months (Smith et al., 2008).  

 

3 | METHODS 

3.1 | Spatial clustering of CDO 

We use the Partitioning Around Medoids (PAM) algorithm based on the F-madogram 

(Bernard et al., 2013) to identify regions with similar CDO variability. The PAM algorithm 
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generates clusters around representative stations called medoids. A medoid is a station where the 

CDO time series best represents the statistical distribution of the data within the other stations in 

the cluster (Bernard et al., 2013; Kaufman & Rousseeuw, 2009). The F-Madogram measures the 

pairwise dependence among CDO time series in each cluster and it is used as distance metric in 

the PAM algorithm (Bernard et al., 2013). The F-Madogram is defined as: 

𝑑𝑖𝑗 =
1

2𝑇
�|𝐹�𝑖(𝑀𝑖

(𝑡)) − 𝐹�𝑗(𝑀𝑗
(𝑡))

𝑇

𝑡=1

| (1) 

where (Mi
 (t), Mj

(t))T are CDO time series from two locations i and j at T different time units and  

𝐹�𝑖 is the empirical distribution function, expressed as (van der Vaart, 1998):  

𝐹�𝑖(𝑢) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 ≤ 𝑢

𝑇
 (2) 

Thus, to run the PAM algorithm, the distance metric dij needs to be computed using 

equation 1 and the number of clusters K has to be specified. For a given K, the PAM algorithm 

divides a CDO data points into K clusters and assigns the random different medoids (Bernard et 

al., 2013). Then, PAM algorithm moves around K medoids and tries to minimize total intra-

cluster distance (Bernard et al., 2013). At each step of the algorithm, a medoid represents one 

station of a valid CDO time series. Consequently, we determine the optimal number of clusters 

and significance level of silhouette coefficient as follows: 

To choose the optimal number of clusters, K, we use silhouette coefficients (SC) 

(Zelenhasić & Salvai, 1987). SC provides a fair comparison between the cohesion and separation 

of K clusters (Bernard et al., 2013; Bracken et al., 2015; Najafi et al.,2018). By considering diK 
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as the F-Madogram distance between a station i and its own cluster medoid and di,-K as the 

smallest F-Madogram distance between the same station i and all the other medoids, the 

silhouette coefficient (SCi(K)) for a station i is defined as: 

SCi(K) = 1 −
diK

di,−K
 (3) 

A positive SCi (K) indicates that the intracluster distance is smaller than the intercluster distance 

and station i is well-classified; a negative or zero SCi (K) indicates that station i is either non-

informative or non-classified (Bernard et al., 2013).  

We run the PAM algorithm for a given number of K values and calculate SC each time 

for each station i. Then, we use the average of all SC for the evaluation of the number of clusters 

and determine the optimal number of clusters (e.g., Bernard et al., 2013; Pournasiri Poshtiri et 

al., 2018).  

We further determine if a SCi(K), as calculated above is statistically significant. We 

determine 95th percentile levels of SCs for each given K under a null hypothesis that there is no 

clustering structure in the CDO dataset. To do that we shuffle the CDO dataset at each station 

along each time series, sample that randomly, and run the PAM algorithm on this time series. 

This randomization removes spatial and temporal dependency (Bernard et al., 2013). We repeat 

this algorithm 50 times, and then select the 95% quantile value from 50 average SCs as the 

statistical significance level. The initial SC values falling below the 95th percentile threshold 

could just happen due to chance. Hence, stations corresponding to the SCs falling below this 

threshold are not well classified, which are not considered for further analyses.   
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We conduct the clustering analysis for using several different data length criteria, 

including (1) 557 stations with 30 years of data from 1983 to 2012, (2) 466 stations with 40 years 

data from 1873 to 2012, and (3) 393 stations with 50 years data from 1963 till 2012. The results 

are presented in section 4.1.  

 

3.2 | Occurrence timing of CDO 

To understand when in the year low flow days are most likely to occur in each cluster, we 

explore the timing of the CDO. First, we determine the average number of days falling below 

10q7 within each month for each station. Then, for each cluster, we can calculate the percentage 

of stations that experience on average the number of days below 10q7 in each month. The result 

is shown in section 4.2.  

 

3.3 | Connections between CDO and climate 

            Finally, we examine the relationships between the regional and larger-scale climate 

indicators (specified in sections 2.2 and 2.3) and CDO. Due to the high spatial variability in the 

time series of CDO within each cluster, we consider a combined version of all the CDO time 

series within each cluster—the combined cumulative streamflow dry days (CCDO), as follows: 

CCDO =
∑ (CDO_Zi ∗ SCi)n
i=1

∑ SCin
i=1

 
(4) 

Where CDO_Zi is the transformed CDO data on the z-scale at each station i that has a 

significant SC value i.e. value higher than the 95th quantile threshold. CCDO for each cluster 
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represents variability of annual drying frequency of rivers within the same cluster and is further 

used to investigate regional and larger-scale climate connections.  

We use the non-parametric Kendall rank correlation test to determine if the regional 

climate variables are significantly correlated at the 5% significance level with each cluster’s 

CCDO. We also use composite analysis to further explore the regional and large scale climate 

connection with CCDO.  

 

4 | RESULTS  

4.1 | Clustering patterns of CDO with similar variability  

Here, we present the detailed analysis for 50-years of CDO data (1963-2012) for 393 

stations because this data length provides a good tradeoff between the number of years used in 

the study and corresponding number of stations, providing a fair spatial distribution for 

clustering analysis (referred to section S1 in Supplementary Information). Figure 2a shows the 

distribution of silhouette coefficients for the 50 years CDO data. The red line represents average 

SC values for each given K, and the dotted blue line displays 95th percentile values of SCs 

(method discussed in section 3.1). We select the K based on the highest average SC value as well 

as lower number of stations having negative SC values (i.e. non-classified stations). Figure 2b 

displays spatial pattern for K=3 where three corresponding medoid stations are indicated by 

triangles and the non-classified stations are displayed as grey circles. K=3 divides the US into 

three large regions (the east, central, and the west) where CDO varies distinctively and the 
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medoids do not show any significant correlations (Figure s4a in section S3). This indicates that 

the clustering algorithm was able to identify three distinct variability patterns in CDO. Unlike 

that, the second best K=12 (Figure 2a) creates smaller clusters throughout the US (Figure s3c), 

where medoids in the nearby clusters display correlations (detailed analysis in section S2 and 

S3).  

CDO for each distinct cluster in Figure 2b indicates spatial variability in themselves 

(section S3 and Figure s5). Therefore, as indicated in the methods section, we combine the data 

by only incorporating stations that are statistically significant, to develop CCDO (equation 4). 

CCDO captures regional fluctuation of the data well (Figure s7), which we use further to 

investigate the relationships between frequency of low flow days within each cluster and climate 

indicators.  

 

4.2 | Occurrence timing of CDO 

Our analysis shows that the majority of the stations within each cluster experience the 

highest frequency of low flow days within the middle of summer to early fall (Figure 3). In the 

eastern US (cluster 1 in Figure 3aa), 94.8% of the stream gauge stations experience low flow 

days from August to October (i.e., 24.3% in August, 53.9% in September, 14.2% in October). In 

the central US (Cluster 2 in Figure 3ba), 63.3% of the stations experience low flow days between 

August and October (i.e., 30.3% in August, 21.2% in September, and 12.1% in October), while a 

significant proportion of the stations also experience low flows during April (25.3%). In the 
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western US (Cluster 3, Figure 3ca), nearly 80.6% stations experience low flows during August-

October (i.e., 13% in August, 54.6% in September, and 14.2% in October), with some stations 

experiencing in February (5.2%), March (2.6%), and April (7.8%) as well.  

 

4.3 | Climate connectivity with CDO  

4.3.1 | Regional climate connectivity 

Table 1 represents the percent of climate stations with statistically significant correlation 

at the 5% significance level with the CCDO of each cluster and Figure 4 shows the spatial plots 

for each of the regional climate variables. In general, more than 80% of the grid cells (bolded 

cells in Table 1) display the significant correlation between PMDI and CCDO across all clusters 

(Figure 4a), indicating that PMDI has the strongest relationship with the CCDO for every region 

of the US. Strong negative associations between the CCDO and PMDI within corresponding 

clusters indicate the high sensitivity of cumulative frequency of low flow days to regional 

evapotranspiration, soil moisture conditions, and precipitation (i.e., the variables that contribute 

to the PMDI calculation). However, to further understand which of the variables underlying the 

PMDI are the most influential, we also examine the CCDO correlations with regional 

precipitation and temperature indicators. For all the clusters, a high percentage of Pcpd stations 

(more than 50%, bolded in Table 1) display significant correlations with CCDO (Figure 4b). In 

the western US (Cluster 3), in addition to Pcpd, Tavg also plays a significant role (Table 1). On the 

other hand, when we move from western parts (Cluster 3) to the eastern parts of the US (Cluster 
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1 and 2 in Table 1 and Figure 4), the high temperature indicators (i.e., Tmax, T95, Tdtr) display 

significant correlations, while such a relationship is not seen in the western parts of the US. The 

temperature variable with the highest proportion of significant stations in the central US (Cluster 

2) are Tdtr (65.45%, bolded in Table 1) and then T95 (51.95%, bolded in Table 1), and that in the 

eastern US (Cluster 1) are T95 (73.5%, bolded in Table 1) and Tmax (69.13%, bolded in Table 1). 

For the sake of completeness, we repeated the above analyses for K=12 and we observed the 

similar relationships in the eastern, central, and western clusters (Section S5 and Figure s11). 

The above findings are further substantiated when we explore the anomalies of the 

climate indicators over the driest CCDO years. To this end, we first extracted the extreme dry 

years (years when CCDO values fell above long-term 75th percentile threshold, shown in Figure 

s9). As a result, the driest years within each cluster co-occurred with known meteorological dry 

years (e.g., 1988, 2002), as well as persistent dry years (e.g., 1991-1995, 1999–2004, 2011-

2012). For a more detailed discussion on the correspondence between CCDO and meteorological 

droughts in the history of US, please refer to the supplementary information (S5). We also look 

at the composite maps of different climate indicators over the driest years of CCDO for each 

cluster (Section S7, Figure s12). The results indicate that extremity of climate indicators and 

severely dry streamflow years co-occur with each other, mostly echoing the results within Figure 

4.  

4.3.2 | Larger-scale climate connectivity 
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           Extreme hydrological events, including low flows, may correspond to atmospheric 

circulation anomalies forced by specific SST patterns in the oceans. Figure 5 shows three distinct 

patterns of SST anomalies in the Pacific and North Atlantic Oceans, corresponding to the driest 

years of CCDO. We conduct a significance testing of the composites by selecting any 15-year 

periods randomly at a time and determining the average SST anomaly values. SST anomaly 

composite magnitudes falling outside the 5th and 95th percentile ranges are considered significant. 

We find that the driest years in cluster 1 coincide with the warmer temperatures in the 

northwestern Pacific Ocean, leading to a tongue-like formation extending from the eastern coast 

of South Asia to the central north Pacific (PDO-like pattern), as well as with a warmer northern 

Atlantic Ocean between the southern coast of Greenland to Equator (Figure 5a). The driest years 

in cluster 2 correspond to a similar but weaker SST patterns corresponding to cluster 1, where 

SST in both oceans are predominantly warmer in the central northern Pacific area and along the 

coast of Greenland and other fragmented locations in the North Atlantic. Furthermore, extreme 

dry years occurring in cluster 3 co-occur with warmer SST anomaly in the northern as well as 

tropical Pacific Oceans, in addition to a warmer Northern Atlantic Ocean that is milder than the 

pattern corresponding to cluster 1. Overall, distinct SST anomaly and their combinations within 

the Pacific and Atlantic affect larger-scale wind and moisture flows differently into different 

regions of the US, affecting local precipitation and temperature variability, and in turn, 

influencing streamflow in different clusters of locations. Again, by repeating the same analysis 
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for K=12, we find that neighboring clusters display similar SST anomaly patterns (presented in 

section S8).  

 

5 | SUMMARY AND DISCUSSION 

In this study, we identified clusters of river headwater locations which are primarily 

driven by natural climate variability. Using a nonparametric data-driven clustering method, we 

identified distinct variability pattern in the frequency of low flow days in the US. There were 

three unique clusters, where low flow days mostly occurred in the summer and early fall months, 

which could be generated by climate extremes. The potential driving mechanisms were discussed 

in Pournasiri Poshtiri et al. (2018), where they concluded that in the western US, precipitation 

deficit seems to play the key role, leading in declining the soil moisture and generating low flows 

in summer-fall (Pournasiri Poshtiri et al., 2018). However, in the central and western regions, 

where the vegetation coverage is denser, increased evaporation during the warm season tend to 

drive low flows in summer and fall (Pournasiri Poshtiri et al., 2018). In this study, we also found 

some low flow days to occur in cold months specifically in snow-dominated regions in clusters 2 

and 3. In those regions, cold seasons low flow days could be developed by two different 

mechanisms: First, low flow days in early cold seasons (November-December) could be 

processed by the summer-fall low flow days and warm/dry climate conditions. During sustained 

dry conditions, low streamflows are generally controlled by subsurface groundwater flows 

(Smakhtin, 2001; Van Loon, 2013), which may result in depletion of soil moisture storage and 
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the groundwater recharge (Dudley & Hodgkins, 2013) and consequently lead to low flow days 

occurrence in the early cold season. Second, in later months (February-April), low temperatures 

lead to snow and ice, causing zero or low flows from these cold-conditions, which consequently 

increase the occurrence of low flow days (Dierauer et al., 2018). Further, a high frequency of low 

flow events in late spring and early summer in the eastern cluster (Figure 3a) could be driven by 

human activities or groundwater depletion (Sadri et al., 2016), although we have tried to 

minimize these influences in this study by using headwaters gauges. We also conducted a 

comparative analysis between the CDO, a low flow occurrence indicator, and annual total 

number of days with zero flows, a river intermittency measurement, and found very similar 

results.  

In this study, our aim was to capture the impacts of climate variability, at the regional and 

larger-scales, on the low flow events, such that we can identify the common climate indicators 

for low flow events within the cluster. However, we acknowledge that we do not investigate 

several other factors that could be important, such as catchment characteristics. Nevertheless, it 

is difficult to identify the most dominant processes on a catchment scale, especially underground 

processes that are difficult to observe. As such, several outstanding questions remain to be 

addressed, most importantly, what are the main catchment drivers of the frequency of the low 

flow in different seasons?  

Further, we investigated the associations between SST anomalies and each cluster’s driest 

years. This offers insights on the relative importance of SST teleconnections on extreme dry 
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phases of rivers. We highlight three significantly different patterns of SST anomaly in the Pacific 

and North Atlantic. Occurrence of warm SST anomaly in the northern Pacific and Atlantic 

Oceans could shift the atmospheric pressure patterns, and consequently, northerly wind 

anomalies reducing the flow of moist air into the continent and leading to reduced precipitation, 

and consequently result in high exceedances in the frequency of hot days over much of US 

(Donat et al., 2016).  

Overall, this study provides a novel contribution on the characterizing of frequency and 

timing of low flow days across the US. We conclude that the occurrence of low flow days across 

the US are organized, occurring in clusters, where they significantly co-vary with regional 

climate variability as well as larger-scale SST patterns. Although other factors play an important 

role in low flow frequency and timing, such as groundwater interaction, catchment geology, and 

other human activities, this study did find significant associations with regional and larger-scale 

climatic drivers. This study suggests that region-specific climate indicators and SST anomalies 

can be used as potential predictors of frequency of low flow occurrence specific to each cluster, 

providing a context for the past and potential changes to streamflow nature in the US rivers.  
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